Source code for dwrappr.generators

from sklearn.datasets import make_regression

from .dataset import DataSet, DataSetMeta


[docs] def sklearn_regression(**kwargs) -> 'DataSet': """ Generates a regression dataset using the make_regression function from sklearn and returns it as a DataSet object. The dataset includes predefined features and target names, and is tagged as synthetic and non-time-series data. Args: **kwargs: Parameters to control the regression dataset generation behavior. These parameters are passed directly to the make_regression function. For further information about the parameters, see the sklearn documentation https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html. Returns: DataSet: A DataSet object containing the generated regression dataset, with metadata describing it. """ x, y = make_regression(**kwargs) # Create a DataFrame for the features feature_columns = [f'feature_{i + 1}' for i in range(x.shape[1])] # Create a DataFrame for the targets if len(y.shape) > 1: target_columns = [f'target_{i + 1}' for i in range(y.shape[1])] else: target_columns = ['target'] ds = DataSet.from_list( features=x, targets=y, meta=DataSetMeta( name='sklearn_regression', time_series=False, synthetic_data=True, feature_names=feature_columns, target_names=target_columns ) ) return ds